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Abstract. The low-energy structure and the thermodynamic properties of ferrimagnetic Heisenberg chains
of alternating spins S and s are investigated by the use of numerical tools as well as the spin-wave theory.
The elementary excitations are calculated through an efficient quantum Monte Carlo technique featuring
imaginary-time correlation functions and are characterized in terms of interacting spin waves. The thermal
behavior is analyzed with particular emphasis on its ferromagnetic and antiferromagnetic dual aspect. The
extensive numerical and analytic calculations lead to the classification of the one-dimensional ferrimagnetic
behavior according to the constituent spins: the ferromagnetic (S > 2s), antiferromagnetic (S < 2s), and
balanced (S = 2s) ferrimagnetism.

PACS. 75.10.Jm Quantized spin models – 65.50.+m Thermodynamic properties and entropy – 75.40.Mg
Numerical simulation studies

1 Introduction

One-dimensional quantum ferrimagnets are one of the
hot topics and recent progress [1–15] in the theoretical
understanding of them deserves special mention. Such
a vigorous argument a great deal originates in the pio-
neering efforts to synthesize binuclear magnetic materi-
als including one-dimensional systems. The first ferrimag-
netic chain compound [16], MnCu(dto)2(H2O)3·4.5H2O
(dto = dithiooxalato = S2C2O2), was synthesized by
Gleizes and Verdaguer and stimulated the public inter-
est in this potential subject. The following example of
an ordered bimetallic chain [17], MnCu(pba)(H2O)3·2H2O
(pba = 1, 3-propylenebis(oxamato) = C7H6N2O6), ex-
hibiting more pronounced one dimensionality, further ac-
tivated the physical [18,19], as well as chemical [20], in-
vestigations. There also appeared an idea [21] that the
alternating magnetic centers do not need to be metal ions
but may be organic radicals.

A practical model of a ferrimagnetic chain is two kinds
of spins S and s (S > s) alternating on a ring with antifer-
romagnetic exchange coupling between nearest neighbors,
as described by the Hamiltonian,

H = J
N∑
j=1

(Sj · sj + sj · Sj+1) . (1)

Here N is the number of unit cells and we set the unit-
cell length equal to 2a in the following. The simplest
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case, (S, s) = (1, 1
2 ), has so far been discussed fairly well.

There lie both ferromagnetic and antiferromagnetic long-
range orders in the ground state [2–4]. The ground state,
which is a multiplet of spin (S − s)N , shows elementary
excitations of two distinct types [8]. The excitations of
ferromagnetic aspect, reducing the ground-state magneti-
zation, form a gapless dispersion relation, whereas those
of antiferromagnetic aspect, enhancing the ground-state
magnetization, are gapped from the ground state. As a
result of the low-energy structure of dual aspect, the spe-
cific heat shows a Shottky-like peak in spite of the fer-
romagnetic low-temperature behavior and the magnetic
susceptibility times temperature exhibits a round mini-
mum [3,10,18]. When the exchange coupling turns
anisotropic, the dispersion of the ferromagnetic excita-
tions is no more quadratic [1] and the plateau in the
ground-state magnetization curve [12] due to the gapped
antiferromagnetic excitations vanishes via the Kosterlitz-
Thouless transition [15].

The quantum behavior of the model with higher spins
is not yet so clear as that in the (S, s) = (1, 1

2 ) case.
Though Drillon et al. [18] made the first attempt to reveal
the general behavior of the model, they fixed the smaller
spin to 1

2 in their argument with particular emphasis on
the problem of the crystal engineering of a molecule-based
ferromagnet−the assembly of the highly magnetic molec-
ular entities within the crystal lattice in a ferromagnetic
fashion. There also exists an extensive numerical study [3],
but the leading attention was not necessarily directed to
the consequences of the variation of the constituent spins.
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So far the generic behavior, rather than individual fea-
tures, of ferrimagnetic mixed-spin chains has been accen-
tuated or predicted, but there are few attempts to charac-
terize or classify the typical one-dimensional ferrimagnetic
behavior as a function of (S, s). In such circumstances, we
aim in this article at elucidating which property of the
model (1) is universal and which one, if any, is variable
with (S, s).

It is true that numerical tools are quite useful in this
context, but they are not almighty. Although the low-
temperature ferromagnetic behavior is quite interesting
from the experimental point of view, it is hardly feasi-
ble to numerically take grand-canonical averages at low
enough temperatures. It is also unfortunate that with
the increase of (S, s), the available information is more
and more reduced in both quality and quantity. Then
we have an idea of describing the model in terms of the
spin-wave theory. The conventional spin-wave treatment
of low-dimensional magnets may discourage us. The Hal-
dane conjecture [22] revealed a qualitative breakdown of
the spin-wave description of one-dimensional Heisenberg
antiferromagnets. Neither quantum corrections [23] nor
additional constraints [24] to spin fluctuations end up with
an overall scenario for the low-energy physics applicable
to general spins. However, Ivanov [7] has recently reported
that the spin-wave description of one-dimensional Heisen-
berg ferrimagnets is quite successful. Though his calcula-
tions were restricted to the ground-state energy and mag-
netization, the highly accurate estimates obtained there
are surprising enough, considering the diverging ground-
state magnetization in the one-dimensional antiferromag-
netic spin-wave theory. For antiferromagnets, quantum
fluctuations of domain-wall type, connecting the two de-
generate Néel states, are important, whereas for ferrimag-
nets, domain-wall excitations lead to magnetization fluc-
tuations and are thus of less significance. Therefore it is
likely that the spin-wave approach is highly efficient for
ferrimagnets. In an attempt to demonstrate such an idea,
we try to describe not only the low-energy structure but
also the thermal behavior of the Heisenberg ferrimagnetic
spin chains (1) within the framework of the spin-wave the-
ory. Extensive numerical calculations, supplemented by
the spin-wave analysis, fully reveal the one-dimensional
ferrimagnetic behavior as a function of the constituent
spins.

2 Elementary excitations
In order to investigate the low-energy structure, we em-
ploy a new quantum Monte Carlo technique [25] as well as
the conventional Lanczos diagonalization algorithm. The
idea is in a word expressed as extracting the low-lying ex-
citations from imaginary-time quantum Monte Carlo data
at a low enough temperature. The imaginary-time corre-
lation function S(q, τ) is generally defined as

S(q, τ) =
〈
eHτOqe−HτO−q

〉
, (2)

where Oq = N−1
∑N
j=1 Oje

2iaqj is the Fourier trans-
form of an arbitrary local operator Oj , which may be

an effective combination of the spins S and s, and the
thermal average at a given temperature β−1 = kBT ,
〈A〉 ≡ Tr[e−βHA]/Tr[e−βH], is taken in a certain subspace.
S(q, τ) can be represented in terms of the eigenvectors and
eigenvalues of the Hamiltonian, |l; k〉 (l = 1, 2, · · · ) and
El(k) (E1(k) ≤ E2(k) ≤ · · · ), and behaves like

S(q, τ) '
∑
l

∣∣〈1; k0|Szq |l; k0 + q〉
∣∣2 e−τ [El(k0+q)−E1(k0)] ,

(3)

at a sufficiently low temperature, where k0 is the mo-
mentum at which the lowest-energy state in the sub-
space is located. Therefore we can reasonably approximate
E1(k0 + q)−E1(k0) by the slope −∂ln[S(q, τ)]/∂τ in the
large-τ region. When we take interest in the lower edge
of the excitation spectrum, such a treatment is rather
straightforward. The elementary excitations of the Hal-
dane antiferromagnets were indeed revealed thus [26].
Here, due to the two kinds of spins in a chain and the
resultant dual aspect of the low-energy structure, the rel-
evant subspace and operator Oj are not uniquely defined.
Since the total magnetization, M =

∑
j(S

z
j + szj ), is a

conserved quantity in the present system, we consider cal-
culating S(q, τ) independently in each subspace with a
given M [27]. The elementary excitation energies for the
ferromagnetic branch are obtained from a single calcula-
tion, S(q, τ) in the subspace of M = 0, while those for
the antiferromagnetic branch from a couple of calcula-
tions, S(q, τ) and the lowest energy in the subspace of
M = (S−s)N+1. We have taken Szj ±szj for Oj and found
that Oj = Szj − szj extracts the eigenvalues of the bonding
(lower-energy) states in both subspaces. The choice of the
scattering matrices is a profound problem in itself and is
fully discussed elsewhere [8,28].

Although the chain length we can reach with the exact-
diagonalization method is strongly limited, the diagonal-
ization results are still helpful in the present system whose
correlation length is generally so small as to be compa-
rable to the unit-cell length (see Fig. 5). Actually, the
ground-state energies for N = 10 coincide with their
thermodynamic-limit values within the first several digits.
The Lanczos algorithm gives the most precise estimate for
the ground-state energy and the antiferromagnetic excita-
tion gap, whereas the quantum Monte Carlo technique is
necessary for the evaluation of the curvature of the small-
momentum dispersion.

On the other hand, we consider a spin-wave descrip-
tion of the elementary excitations as well. We intro-
duce the bosonic operators for the spin deviation in each
sublattice via

S+
j =

√
2S − a†jaj aj, Szj = S − a†jaj ,

s+
j = b†j

√
2s− b†jbj, szj = −s+ b†jbj,

(4)

where we regard S and s as quantities of the same order.
The Hamiltonian (1) is expressed in terms of the bosonic
operators as

H = Eclass +H0 +H1 +O(S−1) , (5)
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where Eclass = −2sSJN is the classical ground-state en-
ergy, andH0 andH1 are the one-body and two-body terms
of the order O(S1) and O(S0), respectively. We may con-
sider the simultaneous diagonalization of H0 and H1 in
the naivest attempt to go beyond the noninteracting spin-
wave theory. Indeed, the higher-order terms we take into
account, the better description of the ground-state proper-
ties we obtain [7]. However, such an idea, as a whole, ends
in failure, bringing a gap to the lowest-lying ferromag-
netic excitation branch and thus qualitatively misreading
the low-energy physics. Therefore, we take an alternative
approach at the idea of first diagonalizing H0 and next ex-
tracting relevant corrections from H1. H0 is diagonalized
as [3,4]

H0 = E0 + J
∑
k

(
ω−k α

†
kαk + ω+

k β
†
kβk
)
, (6)

where

E0 = J
∑
k

[ωk − (S + s)] , (7)

is the O(S1) quantum correction to the ground-state en-
ergy, and α†k and β†k are the creation operators of the ferro-
magnetic and antiferromagnetic spin waves of momentum
k whose dispersion relations are given by

ω±k = ωk ± (S − s), (8)

with

ωk =
√

(S − s)2 + 4Ss sin2(ak). (9)

Using the Wick theorem, H1 is rewritten as

H1 = E1 − J
∑
k

(
δω−k α

†
kαk + δω+

k β
†
kβk
)

+Hirrel +Hquart, (10)

where the O(S0) correction to the ground-state energy,
E1, and those to the dispersions, δω±k , are, respectively,
given by

E1 = −2JN
[
Γ 2

1 + Γ 2
2 +

(√
S/s+

√
s/S

)
Γ1Γ2

]
,

(11)

δω±k = 2(S + s)Γ1
sin2(ak)
ωk

+
Γ2√
Ss

[ωk ± (S − s)] , (12)

with

Γ1 =
1

2N

∑
k

(
S + s

ωk
− 1
)
,

Γ2 = − 1
N

∑
k

√
Ss cos2(ak)

ωk
, (13)

while the irrelevant one-body terms

Hirrel = −J (S − s)2

√
Ss

Γ1

∑
k

cos(ak)
ωk

(αkβk + α†kβ
†
k) , (14)

and the residual two-body interactions Hquart are both
neglected so as to keep the ferromagnetic branch gapless.
The resultant Hamiltonian is compactly represented as

H ' Eg + J
∑
k

(
ω̃−k α

†
kαk + ω̃+

k β
†
kβk
)
, (15)

with

ω̃±k = ω±k − δω
±
k , (16)

Eg = Eclass +E0 +E1. (17)

Now we compare all the calculations in Figure 1. The di-
agonalization results fully demonstrate the steady appli-
cability and good precision of our Monte Carlo treatment.
The spin-wave approach generally gives a good descrip-
tion of the low-energy structure. Even the free spin waves
allow us to have a qualitative view of the elementary ex-
citations. The relatively poor description of the antiferro-
magnetic branch by the free spin waves implies that the
quantum effect is more relevant in the antiferromagnetic
branch. Here we may be reminded of the spin-wave treat-
ment of mono-spin Heisenberg magnets. For the ferromag-
netic chains, the spin-wave dispersions are nothing but the
exact picture of the elementary excitations, while for the
antiferromagnetic chains, those are generally no more than
a qualitative view. The point is that in the present sys-
tem the spin-wave picture is efficient for both elementary
excitation branches and the spin-wave series potentially
lead to an accurate description. More specifically, the di-
vergence of the boson numbers, which plagues the antifer-
romagnetic spin-wave treatment in one dimension, does
not occur in the present system. This viewpoint is further
discussed in the final section. We conclude this section by
listing in Table 1 the spin-wave estimates of a few interest-
ing quantities in comparison with the numerical solutions,
where we define the curvature v as ω̃−k→0 = v(2ak)2.

3 Thermodynamic properties

The dual structure of the excitations leads to unique
thermal behavior. In order to complement quantum
Monte Carlo thermal calculations, especially at low tem-
peratures, we consider describing the thermodynamics
in terms of the spin-wave theory. Introducing the addi-
tional constraint of the total magnetization being zero
into the conventional spin-wave theory, Takahashi [29]
succeeded in obtaining an excellent description of the low-
temperature thermal behavior of one-dimensional Heisen-
berg ferromagnets. The present authors have recently
applied the idea to the spin-(1, 1

2 ) ferrimagnetic Heisen-
berg chain [10]. Here we develop the method for general
spin cases and make a detailed analysis of its validity as a
function of (S, s). The core idea of the so-called modified
spin-wave theory [30,31] can be summarized as controlling
the boson numbers by imposing a certain constraint on
the magnetization. From this point of view, the zero-
magnetization constraint, which is quite reasonable for
isotropic magnets, plays a relevant role in ferromagnets.
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Fig. 1. Dispersion relations of the ferromagnetic and antiferromagnetic elementary excitations, namely, the lowest-energy states
in the subspaces of M = N/2 ∓ 1. The noninteracting- and interacting-spin-wave calculations are shown by dotted and solid
lines, respectively, whereas × and ◦ represent the quantum Monte Carlo estimates (N = 32) and the exact-diagonalization
results (up to N = 12 (a), up to N = 10 (b), up to N = 8 (c, d)), respectively. Here we plot the excitation energy E(k) taking
the ground-state energy as zero.

Table 1. Comparison between the linear-spin-wave (LSW), interacting-spin-wave (ISW), and numerical estimates of the ground-
state energy Eg, the antiferromagnetic excitation gap ∆, and the curvature of the ferromagnetic dispersion, v. The most accurate
numerical estimates of Eg and ∆ are obtained by the exact diagonalization (Exact), whereas those of v by the quantum Monte
Carlo (QMC).

Eg/NJ ∆/J v
(S, s)

LSW ISW Exact LSW ISW Exact LSW ISW QMC

(1, 1
2 ) −1.4365 −1.4608 −1.4541(1) 1 1.6756 1.759(1) 1

2 0.3804 0.37(1)

( 3
2 ,

1
2 ) −1.9580 −1.9698 −1.9672(1) 2 2.8025 2.842(1) 3

8 0.3390 0.31(1)

( 3
2 , 1) −3.8281 −3.8676 −3.861(1) 1 1.5214 1.615(5) 3

2 1.1319 0.90(3)

(2, 1) −4.8729 −4.8973 −4.893(1) 2 2.6756 2.730(5) 1 0.8804 0.76(2)

The resultant low-temperature expansions [29] of the
specific heat and susceptibility of the spin-s Heisenberg
ferromagnetic chain,

C

NkB
=

3
8s

1
2

ζ(3
2 )√
π
t

1
2 − 1

2s2
t+O(t

3
2 ), (18)

χJ

N(gµB)2
=

2s4

3
t−2 − s 5

2
ζ(1

2 )√
π
t−

3
2

+
s

2

[
ζ(1

2 )√
π

]2

t−1 +O(t−
1
2 ), (19)

with t = kBT/J and Riemann’s zeta function ζ(z), indeed
coincide with the thermodynamic Bethe-ansatz calcula-
tions [32] for s = 1

2 within the leading few terms.
In the present system, the zero-magnetization con-

straint is explicitly represented as∑
j

〈Szj + szj 〉 = (S − s)N −
∑
k

∑
σ=±

σñ−σk = 0, (20)

where n±k =
∑
n−,n+ n±Pk(n−, n+) with Pk(n−, n+)

being the probability of n− ferromagnetic and n+ anti-
ferromagnetic spin waves appearing in the k-momentum
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state. Equation (20) straightforwardly proposes that
the thermal spin deviation should cancel the Néel-state
magnetization. By minimizing the free energy

F = Eg +
∑
k

(ñ−k ω̃
−
k + ñ+

k ω̃
+
k )

+ kBT
∑
k

∑
n−,n+

Pk(n−, n+)lnPk(n−, n+) , (21)

with respect to Pk(n−, n+) at each k under the
condition (20) as well as the trivial constraints∑
n−,n+ Pk(n−, n+) = 1, we obtain

C

NkB
=

3
4

(
S − s
Ss

) 1
2 ζ(3

2 )√
2π
t̃

1
2 − 1

Ss
t̃+O(t̃

3
2 ), (22)

χJ

N(gµB)2
=
Ss(S − s)2

3
t̃−2 − (Ss)

1
2 (S − s) 3

2
ζ(1

2 )√
2π
t̃−

3
2

+ (S − s)
[
ζ(1

2 )√
2π

]2

t̃−1 + O(t̃−
1
2 ), (23)

where t̃ = kBT/Jγ with γ = 1− Γ1(S + s)/Ss−Γ2/
√
Ss.

The specific heat C has been obtained by differentiating
the free energy F , whereas the susceptibility χ by calcu-
lating (〈M2〉− 〈M〉2)/3T , where we have set the g factors
of the spins S and s both equal to g, because the differ-
ence between them amounts to at most several percent of
themselves in practice [33].

The analytic expressions (22) and (23) give us a
bird’s-eye view of the one-dimensional ferrimagnetic
behavior. The spin-(S, s) ferrimagnet turns into the
spin-s antiferromagnet in the limit of S → s, whereas
it looks like the spin-S ferromagnet in the limit of
S/s → ∞. In this sense, the subtraction S − s may be
regarded as the ferromagnetic contribution, while the
residual spin amplitude 2s as the antiferromagnetic one.
No ferromagnetic aspect at S/s = 1, while a hundred
percent ferromagnetic aspect for S/s → ∞. Another
consideration also leads us to such a picture. Since the
perturvation from the decoupled dimers [8] qualitatively
well describes the low-lying excitations of the system, we
propose in Figure 2 an idea of decomposing ferrimagnets
into ferromagnets and antiferromagnets, where we let the
decoupled dimers and the Affleck-Kennedy-Lieb-Tasaki
valence-bond-solid states [34] symbolize ferrimagnets
and integer-spin gapped antiferromagnets, respectively.
Now we expect spin-(S, s) ferrimagnets to behave
like combinations of spin-(2s) antiferromagnets and
spin-(S − s) ferromagnets. Since the antiferromagnetic
excitations of the ferrimagnetic ground state are gapped,
the low-temperature behavior of ferrimagnets should be
only of ferromagnetic aspect. At low temperatures there
is indeed no effective contribution from the spin-(2s)
antiferromagnetic chain with an excitation gap [22]
immediately above the ground state. In this context, we
are surprised but pleased to find that provided S = 2s,
the expressions (22, 23) coincide with those for ferromag-
nets, (18) and (19), except for the quantum renormalizing
factor γ. The low-temperature thermodynamics should
be dominated by the small-momentum ferromagnetic

(a)

(b)

(c)

(a)

(b)

(c)

(a)

(b)

(c)

(a)

(b)

(c)

(1,1/2) (3/2,1/2)

(3/2,1) (2,1)

Fig. 2. Schematic representations of the M = (S − s)N
ground states of spin-(S, s) ferrimagnetic chains of N elemen-
tary cells in the decoupled-dimer limit (a), the AKLT ground
states of spin-(2s) antiferromagnetic chains of 2N spins (b), the
M = 2N(S − s) ground states of spin-(S − s) ferromagnetic
chains of 2N spins (c). The arrow (the bullet symbol) denotes
a spin 1/2 with its fixed (unfixed) projection value. The solid
segment is a singlet pair. The circle represents an operation
of constructing spins S and s by symmetrizing the spin 1/2’s
inside. The relation (a) ≈ [(b) + (c)]/2 may be expected.

excitations. Within the linearized spin-wave theory,
the small-momentum dispersions of Heisenberg ferrimag-
nets and ferromagnets are characterized by the curvatures

v(S,s)-ferri =
Ss

2(S − s)J, (24)

v(S−s)-ferro = (S − s)J, (25)

respectively, where we find that they coincide with each
other only when S = 2s. The criterion, S = 2s, is further
convincing when we consider the high-temperature
behavior. The paramagnetic behavior of the spin-(S, s)
ferrimagnet is given as

F (S,s)-ferri

NkBT
= −ln [(2S + 1)(2s+ 1)] , (26)

kBTχ
(S,s)-ferri

Ng2µ2
B

=
1
3

[S(S + 1) + s(s+ 1)] , (27)

whereas those of the spin-(S − s) ferromagnet and the
spin-(2s) antiferromagnet are as follows:

F (S−s)-ferro+F (2s)-antiferro

NkBT
=−ln[(2S− 2s+ 1)(4s+ 1)] ,

(28)

kBT (χ(S−s)-ferro + χ(2s)-antiferro)
Ng2µ2

B

=

1
3

[(S − s)(S − s+ 1) + 2s(2s+ 1)]. (29)
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Fig. 3. Temperature dependences of the specific heat. ◦ represents the quantum Monte Carlo estimates, whereas the solid line
shows the modified-spin-wave calculations starting from the interacting-spin-wave dispersion relations.

These asymptotic values agree with each other only when
S = 2s. This is simply the consequence of the degrees
of freedom. In ferrimagnets of S > 2s, the ferromagnetic
spin degrees of freedom overbalance the antiferromagnetic
ones, while in ferrimagnets of S < 2s, vice versa. Only the
balanced ferrimagnet with S = 2s is well-approximated
as the simple combination of the spin-(S− s) ferromagnet
and the spin-(2s) antiferromagnet. However, we note that
even in the case of S = 2s, the similarity between the fer-
rimagnetic behavior, (22) and (23), and the ferromagnetic
one, (18) and (19), does not go beyond the leading few
terms shown here. The ferromagnetic features of ferrimag-
nets are thermally smeared out. On the other hand, the
ferrimagnetic behavior further deviates from the purely
ferromagnetic one due to the quantum effect character-
ized by γ. The low-temperature expansions (22, 23) imply
that as temperature goes to zero, the quantum effect is
reduced for the specific heat C, whereas enhanced for the
susceptibility χ. In the limit of S/s → ∞, the quantum
corrections Γ1 and Γ2 both vanish.

Although the spin-wave theory combined with the ad-
ditional constraint (20) is so useful, it should further be
modified at higher temperatures so as to control the total
number of the bosons

∑
σ=± ñ

σ
k rather than the subtrac-

tion
∑
σ=± σñ

−σ
k . In our naivest attempt to improve the

theory, we replace the constraint (20) by∑
j

〈Szj − szj 〉 = (S + s− 2Γ1)N − (S + s)
∑
k

∑
σ=±

ñσk
ωk

= 0. (30)

However, the alternative condition (30) changes the low-
temperature description, (22) and (23), which should be
kept unchanged under any artificial constraint, as well as
considerably underestimates the Schottky-like character-
istic peak of the specific heat. In an attempt to remove Γ1

from equation (30), we reach a phenomenological modifi-
cation∑

j

〈: Szj − szj :〉 = (S + s)N − (S + s)
∑
k

∑
σ=±

ñσk
ωk

= 0, (31)

which proposes that the thermal fluctuation should can-
cel the Néel-state magnetization and results in the same
low-temperature description as equations (22, 23), where
the normal ordering is taken with respect to both oper-
ators α and β. Now the overall description of the ther-
mal quantities is numerically obtained and is shown, to-
gether with the precise quantum Monte Carlo calculations,
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Fig. 4. Temperature dependences of the magnetic susceptibility times temperature. ◦ represents the quantum Monte Carlo
estimates, whereas the solid line shows the modified-spin-wave calculations starting from the interacting-spin-wave dispersion
relations.

in Figures 3 and 4. We stress that these are the spin-
wave description of one-dimensional magnets. We are
allowed to recognize that the spin-wave picture is qualita-
tively valid even at high temperatures. The spin-wave the-
ory, which is to overestimate the spin degrees of freedom,
inevitably overestimates the energy-derivative quantities
and under estimate the magnetization-derivative ones at
high temperatures. However, the location of the Schottky-
like peak of the specific heat is generally reproduced well,
which should be attributed to the fine description of the
antiferromagnetic excitation gap by the interacting spin
waves. One might say that the spin-wave description is a
overlikely portrait of the actual behavior. For the ferro-
magnetic ferrimagnet of (S, s) = (3

2 ,
1
2 ), for instance, the

low-temperature shoulder of C is too pronounced and the
high-temperature antiferromagnetic increase of χT is too
suppressed in the spin-wave theory. We note finally in this
section that the double constraint does not improve the
theory at all. At high temperatures, the constraint (31)
dominates the thermal behavior but the constraint (20)
works little. At low temperatures, where ñ−k � ñ+

k , the
two constraints (20) and (31) are almost degenerate and
no numerical solution is found for the couple of Lagrange
multipliers due to the double constraint. Further inclusion

of any tricky constraint is likely to make us lose sight of
the physical basis.

4 Discussion

We have studied the low-energy structure and the ther-
mal properties of Heisenberg ferrimagnetic spin chains
featuring the spin-wave theory. Even with the modi-
fied spin-wave theory, it is still hard to describe the
thermodynamics over the whole temperature range.
However, considering the poor applicability of the
spin-wave theory to one-dimensional antiferromagnets,
the obtained description is quite successful. What is the
difference between ferrimagnets and antiferromagnets, in
spite of the antiferromagnetic coupling between nearest
neighbors in common? The surprising efficiency of the
present spin-wave treatment can be attributed to the or-
dered ground state [2] of ferrimagnets and thus to the
nondiverging sublattice magnetization. The key constant
Γ1 is nothing but the quantum spin reduction

1
N

∑
j

〈a†jaj〉g =
1
N

∑
j

〈b†jbj〉g , (32)
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Fig. 5. Quantum Monte Carlo estimates of the longitudinal
spin-correlation functions in the ground state with M = (S −
s)N ; (a) fS(r): correlations between a larger spin and any other
spin; (b) fs(r): correlations between a smaller spin and any
other spin. The arrows indicate the r →∞ asymptotic values
obtained by the spin-wave theory.

where 〈A〉g denotes the ground-state average of A. Γ1

monotonically decreases as S/s increases, diverging at
S/s = 1 and vanishing for S/s→∞. Since the spin reduc-
tion Γ1 can be a measure for the validity of the spin-wave
description, the spin-wave theory in general works better
as S/s, as well as Ss, increases.

In this context, it is interesting to observe the ground-
state spin correlations,

fS(r) =
{
SzjS

z
j+l for r = 2la,

Szj s
z
j+l for r = (2l+ 1)a,

(33)

fs(r) =
{
szjs

z
j+l for r = 2la,

szjS
z
j+l+1 for r = (2l + 1)a.

(34)

Figure 5 shows the small-r initial behavior of fS(r) and
fs(r), which demonstrates the considerably small correla-
tion length and the existence of the long-range order in the
present system. For the asymptotic correlation between
the two larger spins far distant from each other, for exam-
ple, the spin-wave estimate deviates from the actual value
by 23%, 7%, 18%, and 7% for (S, s) = (1, 1

2 ), (3
2 ,

1
2 ), (3

2 , 1),
and (2, 1), respectively. We find that the above-defined

criterion in terms of S/s and Ss works fairly well. The
theory is not so bad even in the extreme quantum case.

Quite recently, the nuclear spin relaxation time in
a one-dimensional ferrimagnetic Heisenberg model com-
pound, NiCu(C7H6N2O6)(H2O)3·2H2O, has been mea-
sured [35] and its temperature and field dependences have
successfully been interpreted within the framework of the
spin-wave theory [36]. The theory must still be open to
further applications to this fascinating system. We hope
that the present study will motivate further explorations
into low-dimensional ferrimagnets in both theoretical and
experimental fields. The ferromagnetic and antiferromag-
netic mixed nature may further be discussed from different
points of view. For instance, the topological excitations
such as instantons in ferromagnets and the topological
terms in antiferromagnets might give further support to
the present understanding of ferrimagnets.
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